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AbstractIt is increasingly important to structure signal processing algorithms and systems to allow fortrading o� between the accuracy of results and the utilization of resources in their implementa-tion. In any particular context, there are typically a variety of heuristic approaches to managingthese tradeo�s. One of the objectives of this paper is to suggest that there is the potential fordeveloping a more formal approach, including utilizing current research in Computer Science onApproximate Processing and one of its central concepts, Incremental Re�nement. Toward thisend, we �rst summarize a number of ideas and approaches to approximate processing as currentlybeing formulated in the computer science community. We then present four examples of signalprocessing algorithms/systems that are structured with these goals in mind. These examples maybe viewed as partial inroads toward the ultimate objective of developing, within the context ofsignal processing design and implementation, a more general and rigorous framework for utilizingand expanding upon approximate processing concepts and methodologies.
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1 IntroductionIn many contexts it is desirable that algorithms and systems be structured so as to allow for the possi-bility of trading o� between the accuracy or optimality of the results they produce and their utilizationof resources such as time, power, bandwidth, memory, and system cost. For example, in communica-tions systems, lossy source coding which results in approximate rather than exact signal transmissionprovides the opportunity to reduce the required transmission bandwidth. In communication networkswith real-time constraints on the transport of multimedia data such as speech or video, scalable com-pression algorithms enable signal quality to be sacri�ced in order to utilize reduced bandwidth orreduce transmission delay. In computer science, heuristic and approximate search strategies have beendeveloped for applications where exact and exhaustive search strategies are intractable. The balancebetween accuracy and resource requirements in a system that performs digital signal processing (DSP)can be inuenced by the selection of word lengths, �lter order, and sampling rate.In these various problem domains, there exist both formal and informal approaches to managingthe tradeo� between accuracy and resources. Over the last decade there has been a growing interest inthe development of more formal and structured approaches to obtaining a satisfactory balance betweenthese opposing design factors. This work has been driven primarily by a desire to realize systems thatperform demanding tasks within dynamically evolving environments. Various authors have used theterms approximate processing [1], imprecise computation [2], and exible computation [3] to describethis basic approach to system design. The introduction of formal approaches to approximate processingo�ers the possibility of continuously optimizing system performance within the constraints imposed bythe currently available resources and, in this way, achieving graceful degradation of performance inadverse circumstances as an alternative to system failure.The establishment of basic design principles is a fundamental aspect of developing such formalapproaches and certain concepts have been identi�ed as being generally useful. In communications,for example, a well established approach to time-varying or unpredictable channel bandwidth is thenotion of embedded coding [4] whereby the coding strategy involves a hierarchy of data. Including1
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additional levels of the hierarchy implies incrementally re�ning the quality of the decoded signal. Aclosely related and well-established example is the use of progressive transmission [5] for data or imagesin which signal transmission is structured so that successively better approximations to the signal areobtained as transmission proceeds in time. This is useful in a variety of situations, such as transmissionover a channel which is only available for a limited and unpredictable time duration or when it isappropriate to halt transmission once a su�ciently accurate signal reconstruction is obtained.A central concept in the approximate processing literature is that of computation structures withthe incremental re�nement property. Such structures, which have also been referred to as successiveapproximation, iterative re�nement, or anytime [6] algorithms, are de�ned to consist of a successionof stages, each of which improves upon the answer produced by the previous one. In general, theimprovement in each answer is measured with respect to the degree to which it approximates an idealanswer for the given application. A straightforward example of an incremental re�nement algorithmis the long division procedure, which produces an additional signi�cant digit of the quotient at eachiteration. Another common example is Newton's root-�nding method, in which the number of iterations(stages) that are performed is based on the desired amount of accuracy. In the context of signalprocessing, a recent example, to be discussed in greater detail in Section 3, is an FFT-based maximum-likelihood (ML) signal detector. Speci�cally, we show that by using the ML detection strategy after eachstage of the FFT, a series of suboptimal detectors is obtained with performance improving incrementallytoward that obtained with the full FFT. More generally, since multistage and iterative algorithms arecommon in signal processing, it is not surprising that DSP o�ers a fertile ground for exploring formalusage of approximate processing concepts in general and incremental re�nement structures in particular.Incremental re�nement structures for basic categories of signal processing computations (such astransforms and �lters) may be used as building blocks to aid the design of application-speci�c systems.Some applications may simply call for using a �xed number of stages of a given incremental re�ne-ment structure. In this case, the availability of an incremental re�nement structure o�ers design-timeexibility for selecting the most suitable number of stages for the application system. In making this2
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selection, the designer would take into account both resource availability (such as processor capacity)and the expected e�ect on overall system performance. In the context of the model-year concept forthe rapid prototyping of systems [7], this also o�ers the advantage that as the underlying hardwaretechnology improves, one may obtain improved system performance in future design cycles by simplyutilizing a greater number of stages of the same incremental re�nement structure. With this approach, itwould then not be necessary to modify the original processor architecture. The incremental re�nementstructures discussed in sections 3 to 5 are all amenable to this type of design philosophy.In other applications, it is desirable for the overall system to select, during run time, the number ofstages to use from a given incremental re�nement structure. This type of situation would arise if thesystem is to operate in a dynamically changing environment (either in terms of its input data or in termsof resource availability). In such cases, it is desirable to design an adjunct control mechanism for the run-time adaptation of the number of stages to be used. An example of an adjunct control mechanism forincremental re�nement structures in the context of a low-power digital �ltering application is discussedin Section 6. As illustrated in that section, it is obviously important to keep the costs associated withthe control mechanism low relative to the savings achieved by run-time adaptation. In the contextof rapid prototyping, as the underlying hardware technology improves, improved performance may beobtained without requiring basic changes in the processor architecture.Over the past several years, we have been exploring incremental re�nement structures for basiccategories of signal processing tasks and examining their implications for the design of application-speci�c systems. In this paper, we describe some of our major results and place them within the contextof various concepts and formalisms emanating from the Approximate Processing sub�eld of ComputerScience. Speci�cally, in Section 2 we provide a brief overview of that sub�eld and the relevance ofits concepts to approximate signal processing. We then present in sections 3-6 various case-studiesfrom our research on incremental re�nement structures for DSP. In Section 3 we illustrate how theFFT may be used as an incremental re�nement structure for signal detection. In Section 4 we derivenew incremental re�nement structures based on the DFT for real-time spectral analysis. In Section3
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5, we illustrate how an existing DSP computational structure for a particular application (DCT-basedImage Encoding/Decoding) may be modi�ed to obtain an incremental re�nement structure. Section6 describes how incremental re�nement structures for certain IIR and FIR digital �lters may be usedin conjunction with a suitable control mechanism to design adaptive resource-conserving systems forlow-power frequency-selective �ltering.2 Approximate ProcessingIn several areas of Computer Science there has been considerable interest in the development of formalapproaches to the design of systems employing approximate processing techniques. The earliest studiesdealing explicitly with this topic were performed independently in the areas of Arti�cial Intelligenceand Real-Time Systems. In his study of automated reasoning systems for emergency medical diagnosis,E. J. Horvitz proposed [3] in 1987 the explicit use of resource constraints to inform heuristic reasoningstrategies within a decision-theoretic framework. He suggested that reasoning strategies with incre-mental re�nement capabilities could be used to maximize the utility of a system's results by explicitlyweighing the risk of acting on an uncertain medical diagnosis against the cost of performing additionalcomputation. He proposed that by quantifying the manner in which delayed results decreased a sys-tems e�ectiveness and the amount by which the accuracy of the diagnosis improved with the amount oftime spent in computation, one could derive the optimal amount of computation to invest in obtaininga diagnosis. That same year, in a series of publications, J. W.-S. Liu et al. outlined an approach todesigning general purpose real-time computer systems that can skip non-critical portions of scheduledjobs in order to avoid missed deadlines during system overloads [2, 8, 9]. This work included new resultsin scheduling as well as a design tool for constructing and testing Approximate Processing systems. Italso relied on the use of algorithms with the incremental re�nement property.Since those initial studies, a large number of publications on formal methods for employing approx-imate processing have appeared in the Computer Science literature. The ideas presented in the initialpapers have been further developed, alternative approaches have been proposed, and some important4
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new results have been obtained. Several of these are presented in Sections 2.1-2.2. Other signi�cantapproaches are discussed in a recent review paper [10].Although signi�cant activity on this topic has been reported in the Computer Science literature,there has been very little direct migration of these results into other areas or into speci�c applications.This may be due in part to the lack of incremental re�nement algorithms for many computationaltasks and the lack of dependable analyses relating resource allocation and output quality for those thatexist. In particular, the application of approximate processing methodology to the area of DSP hasnot been previously considered. Section 2.3 discusses several domains in which approximate processingmethodologies have been successfully applied and addresses issues relevant to their application in thecontext of DSP.2.1 Algorithm Characterization Using Performance Pro�lesAn important component of any formal approach to the design of systems employing approximateprocessing is the quanti�cation of the tradeo�s between output quality and resource usage. Suchanalyses supply an abstract means for the representation and comparison of algorithms and provide alanguage in which various design problems can be formulated and solved.The most comprehensive framework that has been proposed for characterizing quality/cost tradeo�sis based on the use of performance pro�les [11] [12] [13]. Performance pro�les are functions that mapthe possible resource allocations for an algorithm onto a numerical measure of output quality. Thisframework includes several di�erent performance pro�le structures with varying degrees of complexity.For a given algorithm A, the simplest performance pro�le is a function PA : R+ ! R that mapsa resource allocation onto a quality measure. The resource allocation value may represent any usefulresource measure such as time, memory, arithmetic operations, power, or number of processors. Qualityis an objective measure of some property of the algorithm's output. Fig. 1 illustrates the performancepro�les associated with two di�erent computational structures. In Fig. 1(a), we see the pro�le associ-ated with a \standard" algorithm|one that requires some �xed amount of resources to compute its5
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Resource Usage(a) (b)Figure 1: Typical performance pro�les for (a) a \standard" algorithm and (b) an incremental re�nementalgorithm. (Adapted from [12].)results and for which smaller allocations do not produce any meaningful results. Fig. 1(b) illustrates aperformance pro�le associated with an incremental re�nement algorithm. The output quality obtainedfrom this algorithm can be seen to increase incrementally as additional resources are provided. It shouldbe noted that every algorithm that uses resources and produces output has a performance pro�le|the concept is not restricted to approximation algorithms. In some instances, however, determining ameaningful performance pro�le for a given algorithm may be di�cult.There are several important aspects of algorithm performance that this simple performance pro�ledoes not capture. One such aspect is that for some algorithms, the quality of the output obtainedmay vary although its resource usage is �xed. In such instances, a performance distribution pro�le(PDP) can be used. A PDP for an algorithm A is a function DA :R+!ProbfRg that maps a resourceallocation onto a probability distribution over the quality of the results. One technique for avoiding theadditional complexity of PDPs is to use an expected performance pro�le (EPP). An EPP is de�ned asa function EA :R+!R mapping a resource allocation onto the expected value of the associated outputquality probability distribution. EPPs have been utilized in several studies [3] [14] of approximateprocessing.For some algorithms, the distribution of output quality obtained for a given resource allocation maydepend on characteristics of the input data to the system. In such cases, the distribution of outputquality can be conditioned on the quality of the inputs. This dependency is represented through theuse of a conditional performance pro�le (CPP). Assuming input quality to be represented by a one-6
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dimensional measure, a CPP for an algorithm A is de�ned as a function CA :R � R+!ProbfRg thatmaps a measure of input quality and a resource allocation to a probability distribution over the qualityof the results. Each of these types of performance pro�les has been found to be useful in the contextof approximate signal processing, as we illustrate in Sections 3{6.Within this framework, a variety of useful relations regarding algorithms have been formulated[13]. These include formal de�nitions of the monotonicity of the quality of output obtained from analgorithm as its input quality or resource allocation is increased and the superiority of one algorithmover another (in both deterministic and stochastic senses).2.2 Resource Allocation for Approximate ProcessingA primary bene�t of designing systems using incremental re�nement algorithms is that as the amountof time available for computation uctuates, the system can easily adjust the amount of computationperformed to ensure timely completion of all tasks. Since the earliest studies on the subject, a centralissue in the development of formal methods for approximate processing has been the optimal allocationof resources for systems comprised of multiple incremental re�nement algorithms. Many variations ofthis problem have been studied, each with its own set of assumptions and goals.A number of the problem formulations have been based on the large body of existing results forproblems in real-time scheduling [15] [16]. In the general real-time preemptive scheduling problem, aset of tasks that are independent (or related through precedence constraints) must be scheduled on oneor more processors. Each task has an associated time at which it becomes ready for execution (readytime), a time by which it must be completed (deadline), a measure of relative importance (weight), anamount of processor time that it requires to run to completion (processing time), and a time at whichthe scheduling algorithm is made aware of the existence of the task and its requirements (arrival time).Tasks can be either periodic or aperiodic. When the arrival time is zero for all tasks in a system,the scheduling problem associated with that system is o�-line. Systems containing tasks with positivearrival times require on-line scheduling. 7
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To develop scheduling algorithms for systems employing approximate processing, the establishedmodel for real-time scheduling has been extended [17] to allow the processing time assigned to a taskto vary between some mandatory time and its total processing time. Associated with each task is anerror function that maps the time allocation for the task and the error associated with the tasks thatimmediately precede it to a corresponding measure of the error in its output.1 Tasks are said to beerror independent if there is no relation between their errors. The total weighted error in a schedule isde�ned to be the sum of the errors of each task multiplied by their respective weights.When all tasks in a system are o�-line, error independent, aperiodic, have equal weights, and possesslinear error functions,2 an optimal scheduling algorithm has been found [18] that minimizes the totalweighted error in the schedule for single processor systems, given that a feasible schedule3 for the setof tasks exists. This algorithm employs an earliest-deadline-�rst policy [19] and has time complexityO(n logn), where n is the number of tasks being scheduled. An optimal scheduling algorithm has alsobeen found [20] for the on-line counterpart of this problem, given that the mandatory portion of eachtask can be feasibly scheduled at its arrival time. This has been shown to have complexity of at mostO(n log2 n). When tasks have di�erent weights, there exists an o�-line algorithm [18] that minimizesthe total weighted error using a largest-weight-�rst policy. This algorithm has complexity O(n2 logn).Optimal algorithms for o�-line scheduling on multiprocessor systems have also been developed [21]for the equal weight and di�ering weight cases. These algorithms are of complexity O(n2 log2 n) andO(n2 log3 n) respectively. Optimal scheduling has also been shown possible for tasks with some non-linear error functions. When the error functions are convex, a schedule that minimizes the maximumnormalized error over all tasks can be found [22] in O(n2) time. The normalized error is de�ned asthe di�erence between the time allocated to a task and its total processing time divided by its total1In comparison with the framework for performance characterization described in section 2.1, this model incorporatesthe conditioning of output quality on that of the inputs but fails to incorporate the variability in output quality that mayoccur across di�erent instances of inputs of the same quality. Error is complementary to quality and can be consideredto be the di�erence between a given quality and the quality of an optimal result.2This is equivalent to the error associated with each task being equal to the di�erence between the total processingtime and the amount of time allocated to the task.3A schedule is feasible if all tasks are scheduled to a processor for at least their mandatory processing time during thetime interval between their ready time and their deadline time.8
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processing time.No optimal scheduling algorithms have been found using the real-time scheduling framework forsystems with periodic tasks, error-dependent tasks, or tasks with arbitrary error functions. In fact, thescheduling problem with periodic and error-dependent tasks has been shown [23] to be NP-hard foreven the simplest case, where all tasks have identical periods and error functions. This has led to thestudy of suboptimal heuristic algorithms for such scheduling problems [24].Another framework for the resource allocation problem has been proposed for systems whose struc-ture can be expressed in the form of a functional expression [11] [12] [13]. This term is used in the senseof a pure functional programming language [25], where each function performs a �xed mapping froman input to an output without memory or side-e�ects. In this framework, the behavior of functionsunder varying resource allocations are characterized by CPPs as described in section 2.1. An exampleof a functional expression is E(x) = F (G(x); H(x)), where E is a functional expression composed ofthe elementary functions F , G, and H , and x is its input.A functional expression is also a function and it too has a performance pro�le. However, when thefunctions that comprise the expression are themselves incremental re�nement algorithms, the perfor-mance pro�le of the expression as a whole is dependent on the way in which the total computationtime is divided among its constituent functions. The task of determining an appropriate division of thetotal computation time among the elementary functions has been termed the compilation of functionalexpressions. The problem of optimal compilation can be formulated as a search for the allocation ofcomputing time among elementary functions that results in a CPP for the functional expression as awhole that has no superiors.The problem of optimal compilation for functional expressions has been shown to be NP-completebut pseudo-polynomial [12]. That is, it is NP-complete in general but an optimal solution can poten-tially be found in polynomial time if a �xed bound is placed on the number of inputs that any functionmay have and if all elementary functions' CPPs are monotonically increasing over a bounded range ofresource allocations. An algorithm has been found that produces the optimal CPP when the functional9
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expression contains no repeated subexpressions and the component functions' performance pro�les arepiecewise linear [12]. The complexity of this algorithm is linear in the number of elementary functionsin the functional expression. For functional expressions with repeated subexpressions, no algorithmhas been found that can perform optimal compilation in polynomial time. Several polynomial timeheuristic solutions have been proposed [12].2.3 Applications of Approximate Processing MethodologyFrom the results described in the previous sections it is clear that progress has been made in thedevelopment of a formal methodology for approximate processing. The methodology remains largelyunproven in practice, however. This can be attributed in part to the fact that some of the importantadvances are quite recent. It is also due to the unique requirements that the methodology places onits area of application. Nevertheless, several experimental systems employing formal approaches toapproximate processing have been reported and some work has been performed on the developmentof new algorithms to meet the needs of the methodology. A discussion of some of these systemsand algorithms serves as the starting point for our consideration of applying approximate processingmethodology to DSP.The earliest reported experimental system employing approximate processing methodology was theProtos system for ideal control of probabilistic inference under resource constraints [26] [27]. Thesystem used measures of the expected value of computation to guide the allocation of computationalresources to incremental re�nement algorithms for inferencing in a Bayesian probabilistic network [28].Its advantages over inexible reasoning systems in time-critical situations were demonstrated for threeproblems in medical diagnosis [29].The framework under Protos for determining the expected value of computation was extended intoa comprehensive philosophy of metareasoning [30] (reasoning about reasoning computation), which wasused to develop new algorithms [31] for intractable search problems. By using explicit consideration ofthe value of computation, metareasoning-based approaches have signi�cantly outperformed traditional10



www.manaraa.com

algorithms for game playing (othello) and problem-solving (robot path planning) [31].The problem of robot path planning has also been addressed in a system employing compilation offunctional expressions as described in the previous section [32]. This system incorporated a simulatedincremental re�nement algorithm for visual sensor interpretation and an actual incremental re�nementalgorithm for path planning in order to obtain the optimal CPP for the system as a whole. Noactual incremental re�nement algorithm for image interpretation was used in this work. The simulatedincremental re�nement algorithm arti�cially produced a map of the domain in which the probabilityof an error at each location was related to the amount of time allocated to that module according to aCPP chosen by the system designers.In other work, a series of studies (e.g. [1, 33, 34]) was conducted on the use of approximate processingin a remote vehicle monitoring application. Rather than using incremental re�nement structures,these systems were constructed with multiple methods for performing each system task, where eachmethod produced a di�erent tradeo� between resource usage and output quality. A heuristic schedulingalgorithm was used to select from among the various methods at run-time. This approach, termeddesign-to-time scheduling, o�ers the advantage of having no reliance on the availability of incrementalre�nement structures for the tasks at hand. As disadvantages, however, there exist few results onoptimal scheduling policies for design-to-time systems and the approach requires inherently highersystem complexity through the use of functional redundancy (in the form of multiple methods).Many of the advances in the development of formal methods for approximate processing havebeen based on two basic assumptions. First, that there exist incremental re�nement algorithms for thedesired system's tasks and, second, that the performance of these algorithms is adequately quanti�able.These requirements are not met by the currently available algorithms in most application areas andhave therefore fostered e�orts to develop and analyze incremental re�nement algorithms for a varietyof di�erent applications.A consideration of the �eld of DSP in this regard turns up a wide variety of important algorithmswhich have a natural incremental re�nement structure. For example, Levinson's recursion algorithm11



www.manaraa.com

[35] for linear prediction, which is widely used in speech processing and other applications, producesall-pole signal models in successive iterations with successively increasing model order. The waveletsignal decomposition [36] can be implemented using a tree-structured �lter bank in which each branchof the tree produces successively more detailed analyses of the time-frequency composition of the signal.Some of the less obvious methods for obtaining incremental re�nement behavior in DSP applicationsare explored in Sections 3-6.There also exists a rich set of tools for evaluating the performance of approximate DSP algorithms.The e�ects of variability in such system parameters as sampling rate, quantization, time and frequencyresolution, �lter and model order, and noise corruption have been studied in depth and are well un-derstood. Resource usage requirements such as arithmetic complexity, memory requirements, andparallelization have also been analyzed in great detail.The �rm mathematical foundations on which DSP is built di�erentiate it signi�cantly from thegeneral realm of computational problems. As evidenced by some of our recent research, it is thisproperty that most clearly suggests the potential for application of formal approaches to approximatedigital signal processing. In the next four sections we discuss speci�c examples of incremental re�nementsignal processing algorithms. In each case we indicate how they may be viewed within the generalconceptual framework of Section 2.3 Signal Detection Using the FFTIncremental re�nement is a context-dependent property. That is, the intermediate results obtained froman algorithm may improve incrementally according to some measures of quality while not improvingincrementally according to others. It is the context of a particular application that determines whatthe relevant quality metrics are, and consequently whether an algorithm has the incremental re�nementproperty. An important task in applying approximate processing methodology to DSP is establishingthe contexts in which existing algorithms have incremental re�nement behavior.In the context of detecting sinusoids in noise, the FFT possesses the incremental re�nement property.12
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By considering the performance of the maximum-likelihood detection strategy applied after successiveFFT stages, we have shown [37] that the performance of the resulting suboptimal detector improvesincrementally, converging ultimately to that of the exact ML detector. This leads to important conse-quences such as the fact that for a wide range of SNR values at the input of the FFT, high probabilitiesof detection are obtained without the necessity of going to the last stage of the FFT. In this section,we review these results.We begin by describing the traditional FFT-based approach to ML detection and the analysis of itsperformance. Next, we consider the data obtained at intermediate stages of the FFT in the context ofML detection and point out that at each successive stage of computation the e�ective SNR is doubledwhile the number of channels which could contain signal energy is halved. Compact expressions for theprobability of detection, probability of false alarm, and the receiver operating characteristic (ROC) arediscussed. We conclude our consideration of the FFT with a brief discussion of how these performanceresults can be applied to obtain a CPP.3.1 FFT-Based Maximum-Likelihood DetectionThe detection of a complex sinusoid of unknown frequency and phase in additive white Gaussian noise(WGN) can be formulated as a decision D between the two alternative hypotheses:Hw : x(n) = w(n); (1)Hs : x(n) = s(n) + w(n);where x(n) is the received data sequence, observed for n = 0; 1; : : : ;M � 1, w(n) is the noise process,and s(n) is the sinusoid to be detected. The hypothesis Hw represents the case when only noise ispresent, and Hs the hypothesis that the signal is present.
13
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We consider the detection of complex sinusoids of the forms(n) = pEej 2�M ln+j�; n = 0; 1; : : : ;M � 1; (2)where E is the signal power (which is known), l is an unknown integer frequency index in the range0 � l � M � 1, and � is the unknown phase with possible values 0 � � < 2�. The complex-valuednoise process w(n) with power spectral density N0=2 can be de�ned asw(n) = q(n) + jr(n); n = 0; 1; : : : ;M � 1; (3)where q(n) and r(n) are both real-valued WGN processes with variance N0=4.The maximum-likelihood detector for s(n) consists of a bank of correlators followed by a comparatorof their outputs and a threshold detector [38]. Each correlator can be thought of as producing at itsoutput the magnitude-squared of the output obtained at time n =M � 1 from a �lter matched to oneof the possible sinusoidal frequencies. Denoting by C(k) the output from the correlator associated withfrequency index k, we obtainC(k) = �����M�1Xn=0 x(n)e�j 2�M kn�����2 ; k = 0; 1; : : : ;M � 1: (4)This output is equivalent to the magnitude-squared of the M -point DFT of x(n) and is typicallyimplemented using the FFT algorithm at a signi�cantly reduced computational cost in comparisonwith a �lter-based implementation.The ML detection strategy dictates that the output of these correlators be compared by selecting themaximal value over all C(k). If this value is greater than a threshold �, then the sinusoid is declaredto be present (i.e. D = Hs), otherwise it is declared absent (and D = Hw). Using the Neyman-Pearson detection criterion [38], the threshold value is selected so that a �xed false alarm probability(PFA = ProbfD = HsjHwg) is obtained. 14
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Figure 2: Incremental re�nement detector of sinusoids in noise.The probability of detection and ROC for this detector are determined by forming the distributionof the maximum energy value found across all elements of C(k) under each input hypothesis [39].Under hypothesis Hw, the FFT output consists of M complex-valued random variables each withreal and imaginary parts that are independent and Gaussian-distributed with zero mean and varianceM � N0=4. This results in values of C(k) that are independent and �2-distributed with two degreesof freedom. Under hypothesis Hs, the FFT output for k = l is equal to MpEej� perturbed by acomplex-valued noise component with independent Gaussian-distributed real and imaginary parts ofzero mean and varianceM �N0=4. Hence, C(l) is noncentral �2-distributed with two degrees of freedomand noncentrality parameter M2E. The values of C(k) for k 6= l have the same distribution as for thenoise-only case.3.2 Signal Detection from FFT StagesFor applications in which reduction in computation is desired, one may consider the result of terminatingthe FFT algorithm (radix-2 DIT or DIF) after an intermediate stage of computation and using itsincomplete results as the basis for detection. The structure of a detector employing this approachis illustrated in Fig. 2, where we denote by Xi(k) the output of the ith FFT stage and Ci(k) is themagnitude-squared of Xi(k).By forming the distribution of the maximum energy value found across all elements of Ci(k) under15
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each input hypothesis [39], we can determine the threshold values required to obtain a given probabilityof false alarm, the resulting probability of detection, and the receiver operating characteristic achievedby applying the ML detection strategy after any FFT stage.Application of the ML detector according to the Neyman-Pearson criterion requires that we obtainthe threshold value which gives the desired probability of false alarm (PFA). Since the noise distributiondepends on i, so must the threshold, which we denote by �i. The probability of producing a false alarm,given that a threshold of �i is applied, is [37]PFA = 1��1� exp�� �i2i�1N0��M : (5)It follows that a given value of PFA is obtained when�i = �2i�1N0 ln h1� (1� PFA)1=Mi : (6)The probability of detection PD(i) obtained when FFT processing is terminated after i stages can bederived from the distribution of Ci(k) under hypothesis Hs [37]:PD(i) = 1��1� exp�� �i2i�1N0��M�(M=2i)�1�Q�p2i+1SNRin;r �i2i�2N0��M=2i : (7)where SNRin = 2E=N0 and Q(�; �) is Marcum's Q-function [38]. The receiver operating characteristicis found by substituting Eq. (6) into Eq. (7):PD(i) = 1� (1� PFA)1�2�i �1�Q�p2i+1SNRin;q�2 ln �1� (1� PFA)1=M ���M=2i : (8)This performance analysis enables us to verify that the detector performance improves monotonicallyacross stages. By considering the �rst derivative of the ROC, taken with respect to i, and making term-wise comparisons on the in�nite series expansion of Marcum's Q-function, we obtain the result that for16
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Figure 3: Detection probabilities at successive FFT stages when SNRin = �6 dB, PFA = 10�4, andM = 256.any input SNR and false alarm probability, the probability of detection increases monotonically withi. By the last stage, the performance obviously converges to that of the exact ML detector.For any �xed input SNR and PFA, the improvement in PD(i) between successive FFT stages isnon-uniform across any given FFT algorithm. This is exempli�ed by Fig. 3 which shows a typicalcharacteristic for PD(i) when PFA << 1. In general, the change in PD(i) between successive stagesdepends upon two counteracting e�ects: the doubling of SNR at the output of the FFT, which increasesthe probability of detection, and the halving of the number of channels containing signal energy, whichdecreases it. Since PD(i) increases monotonically, it follows that the shape of the Q function, whichincreases monotonically with its �rst parameter, is the primary inuence on the change in detectionprobability at each stage. In comparison, the reduction in the number of channels containing signalenergy is of secondary importance.Using the performance analysis discussed above, we can determine the number of FFT stages thatmust be completed in order to obtain a desired detection performance. Such information provides asound basis for establishing a CPP for the FFT applied to the problem of detection, with input SNRas the conditioning input quality, the number of stages (or an equivalent measure of time or arithmeticcomplexity) as the resource measure, and the probability of detection as the output quality metric.Fig. 3 then corresponds to a \slice" of the CPP conditioned on an input SNR of �6 dB.17
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4 Spectral Analysis Using the DFTSpectral analysis is an important component of many DSP systems and the most widely-used techniquefor its implementation is the DFT. The development of incremental re�nement approaches to spectralanalysis using the DFT can therefore be expected to have a signi�cant impact on the applicability ofapproximate processing techniques for those systems.Many di�erent approximate DFT algorithms have been proposed. The most well-known are the\pruning"-type algorithms which obtain computational e�ciency by excluding some subset of inputand/or output points. Algorithms of this type include the FFT pruning algorithms [40] [41] [42], Go-ertzel's algorithm [43], and others [44] [45]. Advantages of pruning algorithms include the possibility ofusing the e�cient FFT structure and the ease with which the error introduced through the approxima-tion may be quanti�ed. In contrast to pruning approaches, one may consider sacri�cing the precisionwith which the DFT is computed. For example, such DFT approximations have been obtained usingthe summation by parts approach [46], the Poorman's approach [47], and the quantization and back-ward di�erencing (QBD) approach [48]. Of these various approximate DFT algorithms, only the QBDapproach has been found to o�er incremental re�nement behavior for spectral analysis.We have developed a new class of approximate DFT algorithms [49] which use both QBD ap-proximation and pruning and have the incremental re�nement property. We refer to these algorithmsas DFT incremental re�nement (DFT-IR) algorithms. Each of these algorithms consists of multiplestages, where each stage improves upon the DFT approximation produced by the previous stage. Thequality of the DFT approximation after each stage can be characterized in terms of commonly usedinput-independent metrics for spectral quality: SNR, frequency resolution, and frequency coverage.The arithmetic complexity of each stage, however, depends upon the nature of the input signal. Thus,the characterization of the performance of these algorithms using a performance pro�le, as describedin section 2.1, requires that we establish the probability with which a given level of output quality isobtained, given the characteristics of the input signal. Our approach to this task is to assume thatthe input signals in the application may be characterized by a Gaussian-distributed stationary process18
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with a known autocorrelation. From this, we have derived the probability of completing any particularalgorithm stage, and thus producing a corresponding level of spectral degradation.4.1 DFT-IR AlgorithmsEvery DFT-IR algorithm can be viewed as a cascade of stages, each of which takes a DFT approximationX̂i�1(k) and produces an improved approximation X̂i(k). Examples of this structure are illustratedusing a block-diagram format in Fig. 4(a)-(c). The re�nement process is \jump-started" with thecomputation of an initial approximation X̂0(k), de�ned later in this section, whose computation iscarried out using the block of type J in Fig. 4. Each subsequent stage performs one of three di�erentupdates, and each of these updates improves the previous approximation in a di�erent way. The blocksof type S in Fig. 4 perform SNR updates. That is, each improves the SNR of the previous approximationby performing additional computation. Similarly, the blocks of types R and C represent resolutionupdates and coverage updates respectively. The speci�c arithmetic operations that are performed inany particular update depend upon the sequence of blocks that precede it. We indicate this dependencein Fig. 4 by denoting successive instances of a particular update block by S0, S00, etc. The operationsperformed in each update, however, are independent of the order of the preceding blocks|they dependonly on the number of each type of block that precede that update.Every unique sequence of updates corresponds to a di�erent DFT-IR algorithm. For the M -pointtransform of a Q-bit input signal, the total number of di�erent DFT-IR algorithms, which we denoteby NA, can be shown to be NA = (Q+ (3M=2)� 3)!(Q� 1)!((M=2)� 1)!(M � 1)! : (9)We represent each of these algorithms using a set of control parameters, si, ri, and ci. Table 1 liststhe control parameters associated with the sequence of stages shown in Fig. 4(a). For each i, thecontrol parameter values essentially represent the number of updates of the corresponding type that19
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Stage: 1 2 3 4 5 60 (c)Figure 4: Block diagram depiction of three di�erent DFT-IR algorithms. Each algorithm stage computeseither the initial approximation (J), a SNR update (S), a frequency resolution update (R), or a frequencycoverage update (C). The approximation X̂i(k) is the output of the ith stage of computation. Theoperations that are performed in each block depend upon both the sequence of blocks that precede it aswell as the values of the input data.
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Control Stage (i)Parameter 0 1 2 3 4 5 6 � � �si 1 1 1 2 2 2 2 � � �ri 1 1 1 1 2 2 3 � � �ci 1 2 3 3 3 4 4 � � �Table 1: Control parameters associated with the DFT-IR algorithm shown in Fig. 4(a).are present up to and including the ith stage. For example, si � 1 is equal to the number of SNRupdates performed through the ith stage. The o�set by one in each of the control parameters accountsfor the initial approximation produced by the \jump-start" stage.The operation performed by each stage of a DFT-IR algorithm can be stated in terms of the valuesof the input data and the control parameters associated with that stage. We begin by de�ning the threeupdates mathematically. Their implementation is discussed in section 4.2. The SNR update improvesan approximation by the incorporation of an additional bit level of the input signal. It is de�ned byX̂i(k) =8>>><>>>:X̂i�1(k) +Pri�1n=0 gsi(n)Gsi;n(k); k = 1; 2; : : : ; ci;X̂i�1(k); otherwise; (10)where Gq;n(k) is de�ned asGq;n(k) = 8>>><>>>:�e�j 2�M kn=(1� e�j 2�M k); q = 121�qe�j 2�M kn=(1� e�j 2�M k); q = 2; 3; : : : ; Q; (11)and gq(n) is the �rst circular backward di�erence of the bit vector xq(n), orgq(n) = 8>>><>>>:xq(0)� xq(M � 1); n = 0xq(n)� xq(n� 1); n = 1; 2; : : : ;M � 1; (12)where xq(n) denotes the qth bit of the two's complement binary fraction representation of x(n). In this21
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signal representation, the value of each element of the Q-bit signal x(n) is related to the correspondingvalues of its component bit vectors by:x(n) = �x1(n) + QXq=2 21�qxq(n): (13)The resolution update improves the frequency resolution of the approximation by including an additionaltime sample of the input signal. It is de�ned asX̂i(k) =8>>><>>>:X̂i�1(k) +Psiq=1 gq(ri � 1)Gq;ri�1(k) k = 1; 2; : : : ; ci;X̂i�1(k); otherwise. (14)The coverage update improves the approximation by adding to it an additional frequency sample. It isde�ned as X̂i(k) = 8>>><>>>:X̂i�1(ci) +Psiq=1Pri�1n=0 gq(n)Gq;n(ci); k = ci;X̂i�1(k); otherwise. (15)The \jump-start" stage computes an initial approximation, X̂0(k). It is de�ned asX̂0(k) = 8>>><>>>:g1(0)G1;0(1); k = 1;0; otherwise. (16)The amount of spectral degradation present in the ith successive DFT approximation can be char-acterized in terms of the values of the control parameters. As an alternative to the recursive updateform, X̂i(k) can be expressed asX̂i(k) = siXq=1 ri�1Xn=0 gq(n)Gq;n(k); k = 1; 2; : : : ; ci: (17)
22
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From this equation, it can be seen that ci dictates the spectral bandwidth, 2�ci=M radians, overwhich X̂i(k) is evaluated. The approximate transformation truncates gq(n) to a length of ri samples,e�ectively reducing the frequency resolution of the transformation so that not more than ri distinctfrequencies can be resolved. The SNR of the approximate transform X̂i(k) is reduced by signal quan-tization to approximately 6si dB.4.2 Arithmetic ComplexityThe DFT-IR algorithms implement the update equations (10), (14), and (15) without multiplicationsusing a technique based on the summation of pre-computed vectors [50]. The use of pre-computedpartial results to perform linear combinations is generally referred to as distributed arithmetic [51] [52].The application of various distributed arithmetic techniques to DFT processing has been consideredby others [53] [54], though not in the context of approximate DFT algorithms.In the vector summation approach [50] used by the DFT-IR algorithms, the complex values ofGq;n(k) are stored in memory and are added or subtracted from X̂i�1(k) according to the value ofgq(n) as dictated by the update equations. All summations corresponding to gq(n) = 0 are skipped,resulting in a signi�cant reduction in computation. The total number of real additions, �i, required forevaluating all the stages up to and including the ith stage is�i = siri + 2(si; ri)ci; (18)where (si; ri) = siXq=1 ri�1Xn=0 jgq(n)j: (19)The siri term in (18) accounts for the backward di�erencing operations required to produce gq(n) fromxq(n) over the region included through the ith stage of processing (recall that gq(n) is the backwarddi�erenced vector de�ned in Eq. (12)). The second term in (18) reects the number of additions23
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required to evaluate only those terms of the update equations for which gq(n) 6= 0.The quantity (si; ri), de�ned in Eq. (19), is the total number of non-zero elements in the portionof the backward di�erenced signal vectors gq(n) included through the ith stage. We consequently referto it as the non-zero count for stage i. For notational convenience, we abbreviate the quantity (si; ri)by i, though it should be understood that there is a dependence on the control parameters associatedwith the ith stage. The non-zero count is related to the input signal x(n) through Eqs. (12), (13),and (19). It represents the total signal-dependent contribution to the arithmetic cost of completingthe ith stage of processing. For any two input signals the non-zero count may take on di�erent values,resulting in a di�erent arithmetic cost for performing the same sequence of stages on those signals.A complete characterization of the arithmetic complexity of the DFT-IR algorithms requires that thesignal-dependence of the non-zero count be determined more precisely. Our approach to this problemis based on a probabilistic analysis. When the input signal x(n) is modeled as a stochastic process, thenon-zero count, i, is a random variable. The total arithmetic cost of completing all the stages up toand including the ith stage, �i, is related to i through Eq. (18). Thus, if we wish to determine theprobability distribution of the arithmetic cost for a class of signals, we must �rst obtain the probabilitydistribution of the non-zero count. Such an analysis is reported in [55].4.3 Spectral Degradation and Arithmetic BoundsIn the context of the formal approach to algorithm characterization described in section 2.1, we areespecially interested in determining the e�ect of terminating any particular DFT-IR algorithm when itsarithmetic cost reaches a speci�ed bound B. As discussed earlier, we characterize this e�ect in termsof the probabilities of completion associated with each of the individual algorithm stages.We de�ne the probability of completion, Pi, of a DFT-IR algorithm to be the probability with whichall stages up to and including stage i of that algorithm are completed using not more than B arithmetic
24
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operations. That probability can be expressed asPi = Probf�i � Bg ; (20)where �i is the arithmetic complexity measure given in Eq. (18). In turn, this leads to the conclusion:Pi = Prob�i � B � siri2ci � : (21)In order to determine the probability Pi, we once again need to determine the probability distributionof the non-zero count i. That is, we need to characterize the same random variable which arose in thecontext of the arithmetic complexity measure �i.The associated analysis is reported in [55], where distributions for i are derived based on stationaryGaussian signal models. The results of that analysis are illustrated in Table 2, which indicate thatreasonable a priori estimates of the probability of completion are obtained. The �rst eight columns ofthe table list the control parameters and associated output quality for selected stages from two di�erent256-point DFT-IR algorithms. The ninth column gives the predicted probability with which each ofthe stages will complete within a bound of 1000 arithmetic operations, based on the assumption of apower spectrum equal to the long term average spectrum of male speech. The tenth column gives therelative frequency with which each of the stages was observed to complete in 50,000 Monte Carlo trials,when applied to a signal having the assumed statistics.4.4 DiscussionWe have presented the DFT-IR class of approximate DFT algorithms and a probabilistic analysis oftheir arithmetic complexity. Through judicious use of suitable assumptions we have derived expressionsfor obtaining the probabilities of completion for the stages of any DFT-IR algorithm in the presenceof a �xed upper bound on arithmetic complexity. These results may be used for establishing a PDPfor any DFT-IR algorithm. Our results also lead to further interesting questions regarding algorithm25
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Algorithm Stage Control Output Quality Probability of Probability ofParameters Completion Completioni si ri ci SNR Resolution Coverage (Theoretical) (Measured)1 70 1 8 64 6 8 �=2 0.999 0.99978 1 16 64 6 16 �=2 0.967 0.95694 1 32 64 6 32 �=2 0.635 0.628126 1 64 64 6 64 �=2 0.154 0.1372 70 1 8 64 6 8 �=2 0.999 0.99971 2 8 64 12 8 �=2 0.894 0.84172 3 8 64 18 8 �=2 0.353 0.42173 4 8 64 24 8 �=2 0.042 0.095Table 2: Description and analysis of four stages taken from each of two di�erent 256-point DFT-IR algo-rithms. SNR is given in dB, frequency resolution is the maximum number of resolvable frequency compo-nents, and frequency coverage is in radians. Probabilities resulting from the theoretical analysis and MonteCarlo analysis are given for the completion of each stage within 1000 arithmetic operations. The input signalis presumed to have the long-term average spectrum of male speech sampled at 32 kHz.selection from among the many algorithms in the DFT-IR class. For example, one may consider thedevelopment of procedures for e�ciently obtaining the DFT-IR algorithm whose stage sequence maybe considered as optimal with respect to application speci�c requirements on the evolution of outputquality according to the three quality dimensions over time. Some preliminary investigations of suchprocedures [56] have shown this to be a promising avenue of exploration.5 Image Decoding Using the 2D-IDCTAn important context in which approximate processing and incremental re�nement are relevant iswhen an image or video sequence is broadcast across a variable bandwidth network or to receiverswhose characteristics are not known to the sender and which possess a wide range of capabilities.Reduction of quality may be required at the receivers due to local performance limitations or in orderto adjust to variable data rates. In either of these cases, the use of an incremental re�nement structurefor the decoder implementation enables performance to be easily adapted.In the context of such applications, the two-dimensional inverse discrete cosine transform (2D-IDCT)represents another candidate for the use of an incremental re�nement structure. The energy compaction26
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Figure 5: Schematic diagram of the proposed architecture for incremental re�nement of 2D-IDCT approxi-mations.properties of the DCT make it a popular tool for image and video coding. Accordingly, IDCT compu-tations comprise a signi�cant proportion of the computational e�ort required in the decompression ofthe most widely used image and video coding standards.Our incremental re�nement structure for the 2D-IDCT has the distributed arithmetic (DA) archi-tecture shown schematically in Fig. 5. Other structures for computing the 2D-IDCT have previouslybeen developed [57] [58] [59] using DA but they do not have the incremental re�nement property.A primary di�erence between our incremental re�nement structure for the 2D-DCT and these otherstructures lies in the bit-serial ordering in which the distributed arithmetic operation is performed. Ourarchitecture begins processing at the most signi�cant bit of the input words, advancing progressivelytowards the least signi�cant. With this approach, the intermediate results obtained at the output ofthe DA sub-system represent an approximation of the exact result based on the quantization of theinput data to a fewer number of representation levels.Another important innovation in our work lies in the basic manner in which distributed arithmetichas been applied to the 2D-IDCT. Previously reported implementations [57] [58] [59] are based uponthe decomposition of the 2D-IDCT into the 1D-IDCT of the rows of the input data followed by the1D-IDCT of each of the columns. Obtaining satisfactory incremental re�nement behavior from thisarchitecture is hindered by the fact that even when MSB-to-LSB bit ordering is used, the intermediateresults produced by the �rst stage of row 1D-IDCT processing do not represent approximations to the27
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Standard 2D−IDCT − Stage 1 Standard 2D−IDCT − Stage 2 Standard 2D−IDCT − Stage 3 Standard 2D−IDCT − Stage 4

Standard 2D−IDCT − Stage 5 Standard 2D−IDCT − Stage 6 Standard 2D−IDCT − Stage 7 Standard 2D−IDCT − Stage 8

(a)
Incremental Refinement 2D−IDCT − Stage 1 Incremental Refinement 2D−IDCT − Stage 2 Incremental Refinement 2D−IDCT − Stage 3 Incremental Refinement 2D−IDCT − Stage 4

Incremental Refinement 2D−IDCT − Stage 5 Incremental Refinement 2D−IDCT − Stage 6 Incremental Refinement 2D−IDCT − Stage 7 Incremental Refinement 2D−IDCT − Stage 8

(b)Figure 6: (a) The successive results obtained using a standard distributed arithmetic approach to performing the 2D-IDCT on 8x8 pixel blocks of a384x192 pixel 8-bit image. (b) The results obtained during 8 successive stages of 2D-IDCT re�nement using the successive re�nement architecturedescribed in the text.
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desired output. This observation is illustrated in Fig. 6(a), which shows the successive results of theintermediate calculations for a standard distributed arithmetic approach to performing the 2D-IDCTon an image [57]. In Fig. 6(b) we show the results of the intermediate calculation using the distributedarithmetic architecture described in this section.As in all applications of distributed arithmetic, the selection of an appropriate DA structure isstrongly inuenced by tradeo�s between performance and memory usage. For instance, a direct DAimplementation of the 8x8 2D-IDCT would require 264 words of ROM. In contrast, the architecturedescribed here, with no memory saving optimizations applied, requires 217 words of ROM. Due tothe periodic structure of the IDCT basis functions, there exists considerable potential for reducing thismemory requirement further. Such techniques have been successfully applied in the separable 2D-IDCTimplementation [57], for which the memory requirements for the 16x16 transform were reduced from221 words to 210 words.To examine our 2D-IDCT incremental re�nement structure, consider the NxN 2D-IDCT of X(u; v):x(i; j) = 2N N�1Xu=0 N�1Xv=0 C(u)C(v)X(u; v) cos� (2i+ 1)u�2N � cos� (2j + 1)v�2N � ; (22)where C(0) = 1=p2 and C(u) = C(v) = 1 for u; v 6= 0. Throughout our derivation, u; v; i; j 2f0::N � 1g. When X(u; v) is encoded in two's complement binary the 2D-IDCT can be written as:x(i; j) = 2N N�1Xu=0 N�1Xv=0 C(u)C(v) QXq=1Xq(u; v)�q cos� (2i+ 1)u�2N � cos� (2j + 1)v�2N � ; (23)with Xq(u; v) denoting the qth bit of the binary representation of X(u; v) and�q = 8>>><>>>:�1; q = 1;21�q; q = 2; 3; : : : ; Q: (24)
29
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To express the 2D-IDCT in a form suitable for applying distributed arithmetic, we rewrite Eq. (23) asx(i; j) = QXq=1 N�1Xu=0 Fu(Xq(u; v); i; j)�q ; (25)with Fu(Xq(u; v); i; j) = C(u) 2N N�1Xv=0 C(v)Xq(u; v) cos �(2i+ 1)u�2N � cos� (2j + 1)v�2N � : (26)The arguments to each function Fu are a row vector of N bits (indexed by v) taken from the q-thposition of the u-th row of Xq(u; v), and a coordinate of x(i; j). It's output is the 2D-IDCT of thegiven row vector of bits evaluated at position (i; j). By pre-computing and storing in memory the valuesof Fu, and implementing separately the Fu functions as indicated in Fig. 5, the entire summation overu in Eq. (25) can be evaluated in parallel for a single value of q. Thus, at each stage of computation(i.e. for each value of q) the structure updates its previous result with the 2D-IDCT corresponding toan entire additional bit plane of the input coe�cients. The scaling associated with �q in Eq. (25) isimplemented via bit shifting in the output accumulators.The incremental re�nement structure outlined above for the 2D-IDCT may be used in a practicalDCT-based image encoding/decoding system. The inclusion of each additional bit plane of the coe�-cients in the output of the 2D-IDCT corresponds to an increase in the SNR of the output by approxi-mately 6 dB, making the derivation of a CPP for this incremental re�nement structure a straightforwardprocess. Consequently, an appropriate control strategy can be used by each receiver for terminatingthe decoding process at any intermediate stage in accordance with the availability of system resourcesand/or the desired quality of the decoded image.
30
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6 Low-Power Frequency-Selective FilteringAnother area of interest in approximate signal processing is the formulation of e�cient control mech-anisms for the run-time adaptation of the number of stages to use in a given incremental re�nementstructure. The goal of such adaptation could, for example, be to conserve a limited resource (such asbattery power) or to respond to dynamic changes in resource availability (such as processor cycles ina shared environment). In this section we discuss an example from our recent results on low-powerfrequency-selective digital �ltering [60, 61, 62, 63] as an illustration of run-time adaptation for resourceconservation.The increasing demand for battery operated portable electronic devices has elevated power dissipa-tion to be a critical design parameter. Since digital signal processing is pervasive in such applications, itis useful to consider how algorithmic approaches may be exploited in constructing low-power solutions.The average power consumption, P , of a digital system may be approximately represented through theexpression: P =Xi NiCiV 2ddfs; (27)where Ci is the average capacitance switched per operation of type i (corresponding to addition,multiplication, storage, or bus accesses), Ni is the number of operations of type i performed per sample,Vdd is the operating supply voltage, and fs is the sample frequency. There are many applications insignal processing such as real-time digital �ltering where there is no advantage in exceeding a boundedcomputation rate (i.e., the sample rate is �xed). This attribute can then be exploited to reduce powerdissipation.Power reduction in signal processing systems in general involves optimization at all levels of thedesign abstraction including consideration of process technology, logic and circuit design, architecturedesign, and algorithm selection [64]. Typically, optimization to lower the power dissipation is donestatically at design time. For example, parallel and pipelined architectures can be used to aggressively31
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scale power supply voltages without loss in functional throughput. An order of magnitude power reduc-tion is possible over conventional approaches using this technique. Another trade-o� involves choosingsign-magnitude representation to lower transition activity relative to two's complement representation.Signi�cant power gains can be achieved if optimization is done dynamically at run time, by con-sidering and adapting to time varying signal statistics. Low-level data-dependent clock gating is oneexample of dynamic optimization currently in use by many low-power microprocessors. Another ex-ample involves the use of an adaptive power supply voltage system which exploits dynamically varyingprocessing requirements [65]. The basic idea involves using a lower power supply voltage when thecomputational workload reduces rather than working at a �xed voltage and idling. The technique wediscuss below enables the dynamic adjustment of the computational workload of frequency-selectivedigital �lters.Our approach involves exploiting signal statistics to reduce the e�ective capacitance switched indigital �lters. Rather than using a �xed �lter order (as is the case in conventional �lter design), the�lter order is allowed to vary with the aim of keeping it as small as possible while ensuring that theratio of the passband power to the stopband power for the �lter output, is kept above a speci�edthreshold. Power consumption is reduced since the number of operations (Ni of equation (27)) isdynamically minimized rather than working at a �xed �lter order optimized for the worst case signalstatistics. To illustrate the ideas involved, we �rst introduce an incremental re�nement structure for anIIR Butterworth �lter. We then outline an adaptation framework for dynamically varying the numberof stages used in such incremental re�nement structures. It should be noted that our overall approachis not restricted to Butterworth or even IIR �lters. For example, an incremental re�nement structurefor FIR �ltering is described in [61].6.1 Butterworth Incremental Re�nement StructureAs an example of an incremental re�nement structure for a lowpass IIR �lter, let us consider the caseof a Butterworth �lter of order 2M0. A cascade structure for this �lter consists of a serial connection32
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Figure 7: Incremental re�nement structure for an IIR digital �lter.of M0 second-order Direct-Form II sections, as shown in Figure 7. Each section corresponds to a pairof conjugate poles of the Butterworth �lter and two zeros (both located at z = �1). Denoting thefrequency response of the order-2M0 Butterworth �lter by HM0(!), we may writeHM0(!) = G1(!)G2(!)G3(!):::GM0(!) (28)where Gi(!) denotes the frequency response of the ith second order section in the cascade structure ofFigure 7. It can be furthermore assured that Gi(0) = 1. If only the �rst N sections (N � M0) of thecascade structure in Figure 7 are utilized, the resulting order-2N truncated Butterworth �lter has thefrequency response HN (!), given by: HN (!) = NYk=1Gk(!) (29)The Butterworth pole pairs are assigned to each of the second-order sections so that as the number ofsecond-order sections is increased, the average attenuation in the stopband of the �lter also increases,while keeping the passband gain close to unity. An empirical strategy for making such a pole-pairassignment is as follows: the pole pair for the M0th section is selected �rst as the one which results injHM0�1(!)j having the smallest maximum deviation (from unity) in the passband. From the remainingpole pairs, the pair for the (M0� 1)st section is selected as the one which results in jHM0�2(!)j havingthe smallest maximum deviation (from unity) in the passband. The process is continued backwards inan analogous manner until each section has been assigned its corresponding pole pair. To illustrate,33
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Figure 8: Magnitude-squared frequency responses for truncations of a 20th-order Butterworth �lter with 3,5, 7, 9, and 10 second-order sections.consider the application of this strategy to a 20th order Butterworth �lter with half-power frequencyof �=2. The functions jHN (!)j2 obtained in this case are shown in Figure 8. It should be observed thatas the number of sections (N) is increased, the attenuation in most of the stopband also increases. Onthe other hand, the �lter gain remains close to unity in most of the passband.6.2 Adaptation ObjectiveSuppose that a stationary input x[n] with power spectrum Sx(!) is �ltered using the N -section trun-cated Butterworth �lter, where 1 � N � M0, to obtain an output y[n]. We de�ne the signal-to-noiseratio, SNR, as the ratio of the power in the passband to the power in the stopband. Speci�cally, theinput SNR may be de�ned as ISNR �= PPBxPSBx ; (30)
34
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where PPBx = 12� ZPB Sx(!)d! (31)and PSBx = 12� ZSB Sx(!)d!: (32)Correspondingly, the output SNR is de�ned asOSNR[N ] �= PPBy [N ]PSBy [N ] ; (33)where PPBy [N ] = 12� ZPB Sx(!)jHN (!)j2d! (34)and PSBy [N ] = 12� ZSB Sx(!)jHN (!)j2d!: (35)Ideally, one would like to select N to be the smallest value for whichOSNR[N ] � OSNRtol; (36)where OSNRtol is the minimum tolerable output SNR for the application. Furthermore, if the input isnon-stationary, OSNR[N ] will be time varying and consequently the �lter order would have to adaptover time to reduce power consumption. Of course, this requires an adaptation framework whoseoverhead is low relative to the expected savings in power consumption.35
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Figure 9: Adaptation strategy for updating the �lter order after each new set of L output samples iscomputed.6.3 Adaptation FrameworkOne of the low-cost adaptation strategies that we have developed [62] is illustrated in Figure 9. Thenumber of sections utilized in the �lter's incremental re�nement structure is updated for every newset of L output samples. The low-cost update procedure involves the calculation of input and outputsignal-power estimates followed by the application of the decision module D shown in Figure 9. Thismodule uses the signal-power estimates to form an estimate of the temporally local ISNR. This ISNRestimate is then used as the basis for selecting the �lter order to be applied in computing the next setof L output samples. The precise formulation of the decision rule is based upon the following set ofassumptions:� Sx(!) in the passband is arbitrary.� Sx(!) in the stopband is white but with unknown power.� Sx(!) in the transition band is negligible.� jHN (!)j2 in the passband is equal to 1.
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Let us consider a situation where an N0-section (N0 �M0) truncated Butterworth �lter is applied to astationary input x[n] to obtain the output y[n]. It can be shown [62] that under the stated assumptions,OSNR[N0] = Py[N0]� (Px � Py[N0])PSBh [N0](Px � Py [N0])PSBh [N0] : (37)where Px = 12� Z ��� Sx(!)d!; (38)
Py[N0] = 12� Z ��� Sx(!)jHN0(!)j2d!; (39)and PSBh [N0] = � 12� ZSB �1� jHN0(!)j2� d!��1� 12� ZSB jHN0(!)j2d!� : (40)Furthermore, ISNR = Py[N0]� (Px � Py[N0])PSBh [N0](Px � Py[N0]) : (41)If now a �lter with N sections (N � M0) were to be used (instead of the N0-section �lter usedpreviously) to process the same signal x[n], we would obtainOSNR[N ] = ISNRPSBh [N ] : (42)
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To minimize power consumption, we would want to choose the smallest permissible value for N suchthat ISNR� 1PSBh [N ]� � OSNRtol: (43)or, equivalently, Py [N0]� (Px � Py[N0])PSBh [N0] � OSNRtol �PSBh [N ]� (Px � Py[N0]) (44)To obtain a practical (low cost) decision rule on the basis of the above theory, suppose that we haveapplied a �lter of order N0 to obtain the output signal prior to and including time n. We may thenobtain the following estimates: P̂x = 1L L�1Xk=0 x2[n� k] (45)
P̂y[N0] = 1L L�1Xk=0 y2[n� k]: (46)Using these estimates in the inequality (44) and recognizing that the values of the productOSNRtol �PSBh [N ]� can be prestored, the decision rule may be designed to search for the smallestvalue of N satisfying the inequality. This search requires O(M0) operations|at mostM0 table look-upoperations, two subtractions, at mostM0+1 multiplications and at mostM0 comparisons|whereM0 isthe number of sections in the original Butterworth �lter. The selected value of N becomes the numberof sections used in the incremental re�nement structure to produce the next L output samples. Theprocess continues in this way, updating the �lter order every L samples.4 Thus, for every new set of Loutput samples, the adaptation overhead involves O(M0) operations for the decision module D, and on4Other variations on this update procedure have also been formulated [61, 60] but they are not considered here.38
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the order of 2L multiplications and 2L additions for calculating the estimates P̂x and P̂y. Assumingthat L is much greater than M0, it is clear that the overhead is approximately two multiplications andtwo additions per output sample. For comparison, it should be noted that each second-order section ofthe �lter requires �ve multiplications and four additions per output sample. Thus, even if the adaptivetechnique reduces the number of sections by only 1 over a particular interval, there is a net reductionin power consumption over that interval.6.4 Performance ExamplesFrom (42) we see that the quantity 1=PSBh [N ] represents the factor by which the �rst set ofN sections ofthe Butterworth incremental re�nement structure improves upon the input SNR. We can thus providea performance pro�le for this structure. Speci�cally, Fig. 10 shows 1=PSBh [N ] as a function of N for thecase of truncations of an original 10-section Butterworth �lter with half-power frequency of �=2. Thestopband in this case was de�ned to be between 5�=8 and �. Clearly, the higher the �lter order, thegreater is the resulting improvement in output SNR. This incremental re�nement structure along withthe adaptation strategy described in the previous section (with L = 100 and OSNRtol = 1000) wasapplied to two speech signals which had been frequency-division multiplexed. One signal was in thepassband region of the lowpass �lter and the other was in the stopband region. The sampling rate forthe FDM speech signal was 16000 Hz. Figure 11 shows the speech signal in the passband, the speechsignal in the stopband, and the evolution of the number of �lter sections used by the adaptive �lteringtechnique. Examination of the �gure shows that as would be expected, the number of �lter sections(N) used is large when the input SNR is small and is small when the input SNR is high.7 Summary and ConclusionsAs sophisticated signal processing systems proliferate in consumer electronics, distributed and net-worked environments, unattended sensors, etc. there is increasing emphasis on e�cient use of associ-ated resources. For these and other reasons, the concepts of approximate processing and incremental39
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algorithms of this type.In the �rst part of this paper we have summarized some of the ideas and approaches toward approx-imate processing as currently being formulated in the computer science literature. We then presentedfour examples of signal processing algorithms that are structured with these goals in mind. As is evi-dent in the discussion, in a general sense these four examples �t within the broad conceptual frameworkof approximate processing as discussed in Section 2. However, there remains a large gap between theformal structure and its application in detail to these four examples and more broadly to the �eldof signal processing in general. Closing this gap and expanding the formalism is one of the excitingchallenges of this emerging topic.The four examples that were presented in sections 3-6 were chosen as case studies to illustratesome speci�c points. The algorithm in Section 3 was chosen to illustrate how an existing recursivestructure can be adapted as an incremental re�nement structure. The particular example exploits therecursive structure of the FFT algorithm to obtain an algorithm for signal detection with incremen-tal re�nement. Section 4 presents an example of the development of a new incremental re�nementstructure for an existing signal processing transform (the DFT) in the context of a particular class ofapplications, speci�cally real-time spectral analysis. In Section 5, through the example of DCT-basedimage encoding/decoding, we illustrate how an existing computational structure, which does not havethe characteristic of incremental re�nement, can be modi�ed so that it does. In Section 6, throughthe discussion of low-power algorithms for approximate processing in the context of digital �lters, weillustrate the development of approximate processing algorithms for conservation of resources.8 AcknowledgmentsThis paper was prepared in part through collaborative participation in the Advanced Sensors Consor-tium sponsored by the U.S. Army Research Laboratory under Cooperative Agreement DAAL01-96-2-0001. The views and conclusions contained in this document are those of the authors and shouldnot be interpreted as presenting the o�cial policies either expressed or implied, of the Army Research42



www.manaraa.com

Laboratory or the US Government.This work was sponsored in part by the Department of the Navy, O�ce of the Chief of NavalResearch, contract number N00014-93-1-0686 as part of the Advanced Research Projects Agency'sRASSP program.

43



www.manaraa.com

References[1] V. R. Lesser, J. Pavlin, and E. Durfee, \Approximate processing in real-time problem solving,"AI Magazine, vol. 9, pp. 49{61, Spring 1988.[2] K. J. Lin, S. Natarajan, and J. W. S. Liu, \Imprecise results: Utilizing partial computations inreal-time systems," in Proc. Eighth Real-Time Sys. Symp., (San Jose, CA), pp. 210{217, Dec.1987.[3] E. J. Horvitz, \Reasoning about beliefs and actions under computational resource constraints," inThird Workhsop on Uncertainty in Arti�cial Intelligence, (Seattle, WA), pp. 429{439, July 1987.[4] N. S. Jayant and P. Noll, Digital Coding of Waveforms: Principles and Applications to Speech andVideo. Englewood Cli�s, NJ: Prentice Hall, 1984.[5] K. Knowlton, \Progressive transmission of grey-scale and binary pictures by simple, e�cient, andlossless encoding schemes," Proc. IEEE, vol. 68, pp. 885{896, July 1980.[6] T. Dean and M. Boddy, \An analysis of time-dependent planning," in Proc. Seventh Nat'l. Conf.on Arti�cial Intelligence, (St. Paul, MN), pp. 49{54, Aug. 1988.[7] G. Caracciolo and J. Pridmore, \Architectures for rapid prototyping of embedded signal proces-sors," in Proc. IEEE Int. Conf. Acoustics, Speech, and Signal Processing, (Detroit, MI), pp. 2703{2706, 1995.[8] J. W. S. Liu, S. Natarajan, and K. J. Lin, \Scheduling real-time periodic jobs using impreciseresults," in Proc. Eighth Real-Time Sys. Symp., (San Jose, CA), pp. 252{260, Dec. 1987.[9] K. J. Lin, S. Natarajan, and J. W. S. Liu, \Concord: A system of imprecise computations," inProc. 1987 IEEE Compsac, (San Jose, CA), pp. 75{81, Dec. 1987.[10] A. Garvey and V. Lesser, \A survey of research in deliberative real-time arti�cial intelligence," J.Real-Time Sys., vol. 6, pp. 317{347, May 1994.44



www.manaraa.com

[11] S. J. Russell and S. Zilberstein, \Composing real-time systems," in Proc. 12th Int. Joint Conf.Artif. Intel., (Sydney, Australia), pp. 212{217, 1992.[12] S. Zilberstein and S. Russell, \Optimal composition of real-time systems," Artif. Intel., vol. 82,pp. 181{213, Dec. 1995.[13] S. Zilberstein, Operational Rationality through Compilation of Anytime Algorithms. Ph.D. thesis,U. C. Berkeley, 1993.[14] M. Boddy and T. L. Dean, \Solving time-dependent planning problems," in Proc. Eleventh Int'l.Joint Conf. on Arti�cial Intelligence, (Detroit, MI), pp. 979{984, 1989.[15] J. A. Stankovic and K. Ramamritham, Hard Real-Time Systems. Washington, DC: IEEE Com-puter Society Press, 1988.[16] J. A. Stankovic and K. Ramamritham, Advances in Real-Time Systems. Washington, DC: IEEEComputer Society Press, 1993.[17] J. W. S. Liu, W. K. Shih, K. J. Lin, R. Bettati, and J. Y. Chung, \Imprecise computations," Proc.IEEE, vol. 82, pp. 83{93, Jan. 1994.[18] J. W. S. Liu, K. J. Lin, W. K. Shih, A. C. Yu, and J. Y. Chung, \Algorithms for schedulingimprecise computations," Computer, vol. 24, pp. 58{68, May 1991.[19] E. L. Lawler and J. M. Moore, \A functional equation and its application to resource allocationand scheduling problems," Management Science, vol. 16, pp. 77{84, 1969.[20] W. K. Shih and J. W. S. Liu, \On-line scheduling of imprecise computations to minimize totalerror," in Proc. 13th Real-Time Sys. Symp., (Pheonix, AZ), pp. 280{289, Dec. 1992.[21] J. Y. Chung, W. K. Shih, J. W. S. Liu, and D. W. Gillies, \Scheduling imprecise computations tominimize total error," Microprocessing and Microprogramming, vol. 27, pp. 767{774, 1989.45



www.manaraa.com

[22] K. I. J. Ho, J. Y. T. Leung, and W. D. Wei, \Minimizing maximum weighted error of imprecisecomputation tasks," technical report, Dept. of Computer Science and Engineering, University ofNebraska, 1992.[23] J. Y. Chung and J. W. S. Liu, \Scheduling periodic jobs that allow imprecise results," IEEE Trans.Computers, vol. 39, pp. 1156{1173, Sept. 1990.[24] I. K. Cheong, Scheduling Imprecise Hard Real-Time Jobs with Cumulative Error. Ph.D. thesis,University of Illinois at Urbana-Champaign, 1992.[25] P. Henderson, Functional Programming: Application and Implementation. Englewood Cli�s, NJ:Prentice Hall, 1980.[26] E. J. Horvitz, G. F. Cooper, and D. E. Heckerman, \Reection and action under scarce resources:Theoretical principles and empirical study," in Proc. 11th Int. Joint Conf. Artif. Intel., (Detroit,MI), pp. 1121{1127, 1989.[27] E. J. Horvitz and G. Rutledge, \Time-dependent utility and action under uncertainty," in Proc.7th Conf. on Uncert. in Artif. Intel., (Los Angeles), pp. 151{158, July 1991.[28] J. Pearl, \Fusion, propagation, and structuring in belief networks," Artif. Intel., vol. 29, pp. 241{288, 1986.[29] E. J. Horvitz, Computation and Action Under Bounded Resources. Ph.D. thesis, Stanford Univ.,1990.[30] S. Russell and E. Wefald, \Principles of metareasoning," Artif. Intel., May 1991.[31] S. J. Russell and E. Wefald, Do the Right Thing: Studies in Limited Rationality. Cambridge, MA:MIT Press, 1991.[32] S. Zilberstein and S. J. Russell, \Anytime sensing, planning and action: A practical model forrobot control," in Proc. 13th Int. Joint Conf. Artif. Intel., (Chambery, France), pp. 1402{1407,1993. 46



www.manaraa.com

[33] A. J. Garvey and V. R. Lesser, \Design-to-time real-time scheduling," IEEE Trans. Sys., Man,and Cybernetics, vol. 23, pp. 1491{1502, Nov. 1993.[34] K. Decker, V. Lesser, and R. C. Whitehair, \Extending a blackboard architecture for approximateprocessing," J. Real-Time Sys., vol. 2, no. 1, pp. 47{79, 1990.[35] N. Levinson, \The Wiener RMS error criterion in �lter design and prediction," J. Math. Phys.,vol. 25, pp. 261{278, Jan. 1947.[36] M. Vetterli and C. Herley, \Wavelets and �lter banks: Theory and design," IEEE Trans. Sig.Proc., vol. 40, pp. 2207{2232, Sept. 1992.[37] J. M. Winograd, S. H. Nawab, and A. V. Oppenheim, \FFT-based incremental re�nement of sub-optimal detection," in Proc. IEEE Int. Conf. Acoustics, Speech, and Signal Processing, (Atlanta,GA), pp. 2479{2482, May 1996.[38] H. L. Van Trees, Detection, Estimation, and Modulation Theory|Part I. New York: John Wiley& Sons, 1968.[39] R. J. Kene�c, \Generalized likelihood ratio detector performance for a tone with unknown param-eters in Gaussian white noise," IEEE Trans. Sig. Proc., vol. 39, pp. 978{980, Apr. 1991.[40] J. D. Markel, \FFT pruning," IEEE Trans. Audio and Electroacoustics, vol. AU-19, pp. 305{310,Dec. 1971.[41] D. P. Skinner, \Pruning the decimation in-time FFT algorithm," IEEE Trans. Acoust., Speech,and Sig. Proc., pp. 193{194, Apr. 1976.[42] T. V. Sreenivas and P. V. S. Rao, \FFT algorithm for both input and output pruning," IEEETrans. Acoust., Speech, and Sig. Proc., vol. ASSP-27, pp. 291{292, June 1979.[43] G. Goertzel, \An algorithm for the evaluation of �nite trigonometric series," Amer. Math. Monthly,vol. 65, pp. 34{35, Jan. 1958. 47



www.manaraa.com

[44] H. V. Sorensen and C. S. Burrus, \E�cient computation of the DFT with only a subset of inputor output points," IEEE Trans. Sig. Proc., vol. 41, pp. 1184{1200, Mar. 1993.[45] O. V. Shentov, S. K. Mitra, U. Heute, and A. N. Hossen, \Subband DFT | Part I: De�nition,interpretation, and extensions," Signal Processing, vol. 41, pp. 261{277, Feb. 1995.[46] G. F. Boudreaux-Bartels and T. W. Parks, \Discrete Fourier transform using summation byparts," in Proc. IEEE Int. Conf. Acoustics, Speech, and Signal Processing, vol. 3, (Dallas, TX),pp. 1827{1830, 1987.[47] M. P. Lamoureux, \The Poorman's transform: Approximating the Fourier transform withoutmultiplication," IEEE Trans. Sig. Proc., vol. 41, pp. 1413{1415, Mar. 1993.[48] S. H. Nawab and E. Dorken, \E�cient STFT approximation using a quantization and di�erencingmethod," in Proc. IEEE Int. Conf. Acoustics, Speech, and Signal Processing, (Minneapolis, MN),pp. 587{590, Apr. 1993.[49] J. M. Winograd and S. H. Nawab, \Incremental re�nement of DFT and STFT approximations,"IEEE Sig. Proc. Letters, vol. 2, pp. 25{28, Feb. 1995.[50] S. H. Nawab and E. Dorken, \A framework for quality versus e�ciency tradeo�s in STFT analysis,"IEEE Trans. Sig. Proc., vol. 43, pp. 998{1001, Apr. 1995.[51] A. Peled and B. Liu, \A new hardware realization of digital �lters," IEEE Trans. Acoust., Speech,and Sig. Proc., vol. ASSP-22, pp. 456{462, Dec. 1974.[52] S. A. White, \Applications of distributed arithmetic to digital signal processing: A tutorial review,"IEEE ASSP Magazine, vol. 6, pp. 4{19, July 1989.[53] S. Chu and C. S. Burrus, \A prime factor FFT algorithm using distributed arithmetic," IEEETrans. Sig. Proc., vol. ASSP-30, pp. 217{226, Apr. 1982.[54] F. J. Taylor, \An RNS discrete Fourier transform implementation," IEEE Trans. Acoust., Speech,and Sig. Proc., vol. 38, pp. 1386{1394, Aug. 1990.48



www.manaraa.com

[55] J. M. Winograd and S. H. Nawab, \Probabilistic complexity analysis for a class of approximateDFT algorithms," accepted for publication in J. VLSI Sig. Proc.[56] S. H. Nawab and J. M. Winograd, \Approximate signal processing using incremental re�nementand deadline-based algorithms," in Proc. IEEE Int. Conf. Acoustics, Speech, and Signal Processing,vol. 5, (Detroit, MI), pp. 2857{2860, May 1995.[57] M.-T. Sun, T.-C. Chen, and A. M. Gottlieb, \VLSI implementation of a 16x16 discrete cosinetransform," IEEE Trans. Circ. and Sys., vol. 36, pp. 610{617, Apr. 1989.[58] S. Uramoto, Y. Inoue, A. Takabatake, J. Takeda, Y. Yamashita, H. Terane, and M. Yoshimoto,\A 100-MHz 2-D discrete cosine transform core processor," IEEE J. Solid State Circ., vol. 27,pp. 492{498, Apr. 1992.[59] H. Fujiwara, M. L. Liou, M.-T. Sun, K.-M. Yang, M. Maruyama, K. Shomura, and K. Ohyama,\An all-ASIC implementation of a low bit-rate video codec," IEEE Trans. Circ. and Sys. for VideoTech., vol. 2, pp. 123{133, June 1992.[60] J. T. Ludwig, S. H. Nawab, and A. Chandrakasan, \Low power �ltering using approximate pro-cessing for DSP applications," in Proc. Custom Integrated Circuits Conf., (Santa Clara, CA),pp. 185{188, May 1995.[61] J. T. Ludwig, S. H. Nawab, and A. Chandrakasan, \Low-power digital �ltering using approximateprocessing," IEEE J. Solid State Circ., vol. 31, pp. 395{400, Mar. 1996.[62] J. T. Ludwig, S. H. Nawab, and A. Chandrakasan, \Convergence results on adaptive approximate�ltering," Advanced Signal Processing Algorithms, (F. T. Luk, ed.), Proc. SPIE 2846, Aug. 1996.[63] J. T. Ludwig, S. H. Nawab, and A. Chandrakasan, \Approximate �ltering using incrementalre�nement structures," in preparation for submission to IEEE Trans. Sig. Proc., Summer 1996.[64] A. Chandrakasan and R. Broderson, Low Power Digital CMOS Design. Norwell, MA: KluwerAcademic Publishers, 1995. 49



www.manaraa.com

[65] V. Gutnik and A. Chandrakasan, \An e�cient controller for variable supply-voltage low powerprocessing," in VLSI Circuits Symposium, June 1995.

50


